
How-to Easily Design an Adder Using VHDL

Preface
We are going to take a look at designing a simple unsigned adder circuit in VHDL through different coding
styles. By doing so, this will get you familiar with designing by different methods and, hopefully, show you
to look for the easy solution before attempting to code anything.

The specific circuit we are going to model in this how-to is a 4-bit unsigned adder. In the first pass of the
design, we will build a 1-bit full adder (or (3,2) counter) slice that will be used to build the full 4-bit adder.
In the second pass of the design, we are going to build the circuit using the IEEE std_logic unsigned
package, a much more code efficient and scalable design.

This how-to assumes you have some knowledge of VHDL and understand concepts such as entities,
architectures, and signals.

1-Bit Full Adder
As you know, a 1-bit full adder is characterized by the following equations:

sum = x xor y xor cin
cout = (x and y) or (x and cin) or (x and cout)

where x, y, and cin are the two inputs and the carry in, respectively while sum and cout are the sum and
carry out. A pictorial representation of the component is listed in figure 1.

Figure 1 - 1-Bit Full Adder Component

The VHDL code for the above component (downloadable file add_1_bit.vhd) is as follows:

 library IEEE;
 use IEEE.std_logic_1164.all;

 entity add_1_bit is
 port (
 x: in std_logic;
 y: in std_logic;
 cin: in std_logic;
 sum: out std_logic;
 cout: out std_logic
);
 end add_1_bit;

 architecture rtl of add_1_bit is
 begin
 sum <= x xor y xor cin;
 cout <= (x and y) or (x and cin) or (y and cin);
 end rtl;

http://xup.msu.edu/howtos/add/vhd/add_1_bit.vhd

As you can see, we are using the standard IEEE libraries, which include std_logic, in order to create
components that can be synthesized easily to hardware. Using signal types such as bit may not
synthesize or produce unpredictable results. Always use the std_logic_1164 library !

This is a pretty standard component. In the entity declaration, x, y, and cin are declared as inputs of type
std_logic. The outputs are sum and cout of type std_logic. In the architecture section, we define the
outputs sum and cout to be concurrent statements based directly off the inputs. Nothing special about this
component, I'm sure you have already seen a version of this model.

4-Bit Unsigned Adder using 1-Bit Full Adder Component
Now we are going to make four copies of the above component to make our 4-bit unsigned adder
component, thus producing a ripple-carry adder. This is done through instantiating four copies of the
above 1-bit adder component in VHDL. Figure 2 illustrates the connect ions of this component.

Figure 2 - 4-Bit Unsigned Adder

The inputs to the component are the 4-bit unsigned numbers, x and y, and the carry in that includes cin
and the internal ripple carries between each 1-bit block. The 4-bit output sum and cout are shown as

outputs of the systems. Listed below is the VHDL code for the component (downloadable add_4_bits.vhd).

 library IEEE;
 use IEEE.std_logic_1164.all;

 entity add_4_bits is
 port (
 x: in std_logic_vector(3 downto 0);
 y: in std_logic_vector(3 downto 0);
 cin: in std_logic;
 sum: out std_logic_vector(3 downto 0);
 cout: out std_logic
);
 end add_4_bits;

 architecture rtl of add_4_bits is
 component add_1_bit
 port (
 x: in std_logic;
 y: in std_logic;
 cin: in std_logic;
 sum: out std_logic;
 cout: out std_logic
);
 end component;

http://xup.msu.edu/howtos/add/vhd/add_4_bits.vhd

 signal i_carry: std_logic_vector(2 downto 0);
 begin
 cell_1: add_1_bit
 port map (x(0), y(0), cin, sum(0), i_carry(0));

 cell_2: add_1_bit
 port map (x(1), y(1), i_carry(0), sum(1), i_carry(1));

 cell_3: add_1_bit
 port map (x(2), y(2), i_carry(1), sum(2), i_carry(2));

 cell_4: add_1_bit
 port map (x(3), y(3), i_carry(2), sum(3), cout);
 end rtl;

You can see that we define the component add_1_bit in the architecture declaration section of the code.

Four versions of this component are then declared in the body section of the code, with all of the
appropriate "glue" between each component. As this point, you must be asking, "isn't there an easy way
to do this?". From my perspective, this is alot of code for just a 4-bit unsigned adder; the point to VHDL is
to make it easier to perform operations such as the above. Let's take a look at an easier way.

4-Bit Unsigned Adder Using std_logic_unsigned
Using the same entity as above, look at the code below and notice how much and where it has been
shortened.

 library IEEE;

 use IEEE.std_logic_1164.all;
 use IEEE.std_logic_unsigned.all;

 entity add is
 generic (width: integer:=4);
 port (
 x: in std_logic_vector((width-1) downto 0);
 y: in std_logic_vector((width-1) downto 0);
 cin: in std_logic;
 sum: out std_logic_vector((width - 1) downto 0);
 cout: out std_logic
);
 end add;

 architecture rtl of add is
 signal i_sum: std_logic_vector(width downto 0);
 constant i_cin_ext: std_logic_vector(width downto 1) := (others => '0');
 begin
 i_sum <= ('0' & x) + ('0' & y) + (i_cin_ext & cin);
 sum <= i_sum((width-1) downto 0);
 cout <= i_sum(width);
 end rtl;

The first thing you will notice, at the top of the code, is the reference to the std_logic_unsigned package,
used for unsigned std_logic arithmetic operations. This package contains a procedure called "+" which we

use as an addition within the body of the architecture. This "+" takes three unsigned std_logic_vectors
and adds them, returning a result.

The other should be the use of a generic. A generic lets us produce code that can be changed by the
passed parameter. In our case, we let the generic width be the bit width of the two numerands, thus
making the code scalable to any width of signals.

For this specific example, we take x and y, concatenate a '0' to the beginning (unsigned logic). For cin, we
concatenate a vector one less than the generic constant. These are all added with "+" and assigned to
the result i_sum. We then split i_sum into the sum and the carry out. This can be done a number of ways

but this is one of them and, as you can see, is much simpler than the previous example. Additionally, with
the use the genericwidth, the component becomes much more reusable, a quality always desired by
designers.

4-Bit Simple ALU
Using the same entity as above, look at the code below and notice how easily one can put together an
ALU.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity ALU is
 generic (width: integer:=4);
port(A: in std_logic_vector((width-1) downto 0);
 B: in std_logic_vector((width-1) downto 0);
 Sel: in std_logic_vector(1 downto 0);
 Res: out std_logic_vector((width-1) downto 0)
);

end ALU;

architecture behv of ALU is
begin
 process(A,B,Sel)
 begin
 -- use case statement to achieve
 -- different operations of ALU
 case Sel is
 when "00" =>
 Res <= A + B;
 when "01" =>
 Res <= A + (not B) + 1;
 when "10" =>
 Res <= A and B;
 when "11" =>
 Res <= A or B;
 when others =>
 Res <= "XX";
 end case;
 end process;
end behv;

Now, you can expand the model to include full ALU. Moreover, you can see how you can access individual bits to
generate needed flags.

